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Abstract 

 
Considering that high-dose X-ray radiation during CT scans may bring potential risks to 
patients, in the medical imaging industry there has been increasing emphasis on low-dose CT. 
Due to complex statistical characteristics of noise found in low-dose CT images, many 
traditional methods are difficult to preserve structural details effectively while suppressing 
noise and artifacts. Inspired by the deep learning techniques, we propose a densely connected 
residual network (DCRN) for low-dose CT image noise cancelation, which combines the ideas 
of dense connection with residual learning. On one hand, dense connection maximizes 
information flow between layers in the network, which is beneficial to maintain structural 
details when denoising images. On the other hand, residual learning paired with batch 
normalization would allow for decreased training speed and better noise reduction 
performance in images. The experiments are performed on the 100 CT images selected from a 
public medical dataset—TCIA(The Cancer Imaging Archive). Compared with the other three 
competitive denoising algorithms, both subjective visual effect and objective evaluation 
indexes which include PSNR, RMSE, MAE and SSIM show that the proposed network can 
improve LDCT images quality more effectively while maintaining a low computational cost. 
In the objective evaluation indexes, the highest PSNR 33.67, RMSE 5.659, MAE 1.965 and 
SSIM 0.9434 are achieved by the proposed method. Especially for RMSE, compare with the 
best performing algorithm in the comparison algorithms, the proposed network increases it by 
7 percentage points.  
 
 
Keywords:  low-dose CT, image denoising, convolutional neural network, dense connection, 
residual learning 
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                                                            1. Introduction 

With the development of CT technology, use of CT imaging in medical diagnosis has 
expanded. Considering the potential risks to patients from high-dose radiation during CT 
scans, reducing radiation dose while maintaining good image quality for medical diagnosis has 
become an important research field in medical imaging. In 1990, Naidich et al. [1] 
conceptualized low-dose CT (LDCT); they lowered the radiation dose by reducing X-ray tube 
current with keeping other scanning parameters unchanged. When the tube current is reduced, 
the number of photons received by the detector also decreases, causing the projection data to 
be contaminated by noise. Thus, the CT image reconstructed from such contaminated 
projection data will have high noise and streaking artifacts [2], resulting in adverse effects to 
medical diagnosis. To improve upon the issue of low quality low-dose CT images, many 
methods are proposed. These methods are encompassed by three overarching categories: 
sinogram filtering, image reconstruction and image domain denoising. 

The sinogram filtering performs on the projection data before image reconstruction. Typical 
algorithms include generalized multi-dimensional adaptive filtering [3], penalized weighted 
least-squares (PWLS) algorithm [4], bilateral filtering [5], structure adaptive filtering [6] and 
so on. The advantage of sinogram filtering is that they can make full use of the statistical 
characteristics of noise in the sinogram domain [7]. However, when edges in the sinogram are 
not well preserved, sinogram filtering is impaired by spatial resolution loss. This causes new 
noise and artifacts to be introduced after image reconstruction. The filtered back projection 
(FBP) algorithm [8] is the most common CT image reconstruction method, which has the 
advantages of high resolution and fast imaging speed. But at the same time, the FBP algorithm 
has a high requirement for the completeness of projection data. When the amount of projection 
data is insufficient, the quality of the reconstructed image will be significantly reduced. 
Recently, in order to ameliorate the reconstructed image quality, researchers have 
recommended iterative reconstruction algorithms, such as adaptive statistical iterative 
reconstruction (ASIR) and model-based iterative reconstruction (MBIR). However, despite 
the improved image quality, these processes are very time-consuming. 

Sinogram filtering and image reconstruction both require access to projection data, but the 
projection data is difficult to be accessed by normal users since it is the intermediate result of 
CT scanner. In contrast, image domain denoising algorithms can be performed on the 
reconstructed CT images directly, which do not rely on the projection data. To take advantage 
of similar features found within a large neighborhood in an image, an adaptive nonlocal means 
algorithm was suggested [9]. Proposed by Kang et al. [10], an adaptive block-matching 3D 
algorithm achieved high efficiency in low-dose CT image noise reduction tasks. Chen et al. 
[11] proposed an artifact suppression dictionary learning (ASDL) algorithm, which integrates 
the direction and scale information of artifacts into dictionary training, and then eliminates 
artifacts by sparse representation. Furthermore, Chen et al. [12] proposed a discriminative 
feature representation (DFR) algorithm, which uses the feature dictionary to decompose 
high-dose CT image features from low-dose CT images for noise-free image estimation. 
Although the statistical characteristics of noise in projection data are well known as Poisson 
distribution, they become complex in reconstructed image. In [13], the non-local means (NLM) 
was adapted for CT image denoising. Khan et al. proposed a 2-D Adaptive Trimmed Mean 
Autoregressive (ATMAR) model to denoise of medical images corrupted with Poisson noise 
[14]. Meanwhile, a Weighted Gradient Filter for Poisson noise in medical images is proposed 
in [15]. Through this image domain noise reduction process, the image quality is significantly 
improved, but smoothing and/or residual errors often occur in the processed image. These 
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problems are difficult to solve considering the non-uniform distribution of CT image noise.  
Thus, the traditional methods are difficult to achieve an optimal balance between denoising 
performance and detail preservation, in other words, it is easy to lose details in image domain 
while suppressing noise and artifacts. In the recent years with rapid deep learning 
breakthroughs [16], convolutional neural network (CNN) has shown great advantages and has 
been applied to many computer visual tasks, ranging from image noise reduction, blur 
reduction and super-resolution to segmentation, detection and recognition. With strong 
capabilities of feature learning and mapping, CNN-based methods typically demonstrate 
promising advantages compared to traditional methods in the process of removing complex 
noise found in low-dose CT images. Chen et al. proposed a simple CNN model for low-dose 
CT image denoising, which performs better than the traditional methods in both visual quality 
and quantitative indexes [17]. To fully demonstrate the superiority of the convolutional neural 
network when compared with traditional methods, a more detailed experiment was then 
carried out [18]. Consequently, they further considered a residual encoder-decoder 
convolutional neural network (RED-CNN), which allowed them to attain avant-garde noise 
reduction performance [19]. Kang et al. Determined a deep convolutional neural network to 
adequately subdue CT-specific noise by applying the deep CNN to low-dose CT image 
wavelet transform coefficients [20]. Accordingly, they imparted the wavelet residual network, 
which seamlessly integrates the extensive reach of deep learning with the heightened 
performance standard provided by framelet-based noise reduction algorithms to ascertain a 
striking framelet-based denoising algorithm [21]. Yang et al. proposed a two-dimensional and 
three-dimensional deep residual network to remove noise and artifacts while effectively 
preserving details [22]. Gholizadeh-Ansari et al. introduced dilated convolution into the 
proposed residual network, which expands the receptive field of the network and enables the 
network to obtain better denoising results with fewer convolutional layers [23]. Although 
some studies involved construction of deeper network, most image denoising tasks are 
considered as “low-level” tasks since limited layers without no intention to extract features. 
This is in clear contract to high-level task such as recognition or detection, in which deep CNN 
layers and other operations are widely used to capture deep features of images [16]. 

Inspired by ResNet [24] and DenseNet [25], we recommend a densely connected residual 
network (DCRN) for low-dose CT image noise cancelation, which is carefully designed to 
achieve harmony between denoising performance and computational setbacks. The rest of this 
paper is organized as follows. The structural characteristics of our proposed DCRN are 
specified in section 2. In section 3, various qualitative and quantitative experiments performed 
are provided to support the proposed DCRN model, along with an in-depth discussion and 
analysis on the impacts of the structural features on the denoising performance. Finally, a 
conclusion is drawn in Section 4. 

2. Method 

2.1 Densely connected residual network 
When CNN goes deeper, the information about the input and gradient will vanish gradually 
during the process of propagation, which makes it more difficult to train deep CNN model. 
Since residual mapping can be easier understood compared to the original unreferenced 
mapping, residual learning [24] of CNN would provide for an effective solution to the issue of 
performance degradation from increased network depth. Consequently, very deep CNN are 
not only easily trained, but also highly accurate. Although residual learning was firstly applied 
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to image classification and object detection, it has been successfully extended to various 
computer vison tasks including image denoising. In addition to residual learning, batch 
normalization (BN) [26] has also been widely used to improve training efficiency; it applies a 
normalization step in addition to a scale and shift step prior to nonlinear activation layer in 
order to account for the internal covariate shift. Using BN layer in CNN can bring several 
benefits, such as faster convergence, improved results, and reduced sensitivity to initialization. 
As for how batch normalization interacts with residual learning, on one hand, batch 
normalization alleviates internal covariate shift within the residual block, thus improving the 
performance of residual learning. On the other hand, residual learning makes the inputs of the 
hidden layers closer to the Gaussian distribution, which reduces the correlation between them 
and helps batch normalization to accurately adjust to internal covariate shift. Therefore, the 
integration of residual learning and batch normalization will allow for an efficient training 
process and a better denoising performance [27]. Our proposed network adopts this strategy. 

Different from ResNet [24] that bypasses signal from one layer to the next via summation, 
DenseNet [25] maximizes information exchange between layers in the network through a 
simple connectivity model- layers of the same feature map size to be connected directly to 
each other. Each layer receives inputs from all previous layers and passes on its own feature 
maps to all subsequent layers. In image denoising, due to the information loss during the 
forward propagation process of the network, many CNN-based methods without skip 
connections are difficult to preserve details effectively in denoised image. Now with this dense 
connectivity pattern, later layers can make full use of the feature maps of all early layers, thus 
significantly reducing information loss. Our proposed network has also drawn on the 
experience of this dense connectivity pattern. 

 In dense blocks, the input of the subsequent convolution modules consists of the input and 
output feature maps of the previous module, so that the output feature maps of each 
convolution module can be directly utilized by all subsequent convolution modules. The 
advantages of this dense connectivity pattern are as follows: on the one hand, feature map 
dense connection establishes a direct connection path between the front and rear layers of the 
network, and the gradient can directly reach any layer in front of the network in the process of 
back propagation, thus preventing gradient disappearance during network training. On the 
other hand, contrary to traditional CNN, which only uses the output feature maps of the 
previous layer, this dense connectivity pattern enables any layer in the network to maximize 
usage of the output feature maps of all the preceding layers, which encourages the reuse of the 
feature maps and improves the network's feature learning ability. As the convolution module 
continuously connects the input and output feature maps, the amount of feature maps inside 
the network will increase sharply in accordance to the increasing number of convolution 
modules, augmenting computation significantly. Therefore, the network implemented in this 
paper is appropriately simplified while referring to this dense connectivity pattern.  As shown 
in Fig. 1, the output feature maps of the all convolution modules are directly connected to the 
rear of the Concat layer, and then the Bottleneck layer compresses the feature maps on the 
dimension, which not only ensures that the output feature maps of the network of each 
convolution module figure make full use of it, but also improves the computation efficiency of 
the network. Based on these theoretical foundations, we proposed a densely connected 
residual network (DCRN) for low-dose CT image noise, which combines the ideas of dense 
connection with residual learning.  
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Fig. 1. The architecture of our proposed network. 
 

 Fig. 1 demonstrates the overall architecture of our proposed network. The input of DCRN 
is LDCT image, the output is the corresponding NDCT image; Conv, BN and ReLU represent 
convolutional layer, batch normalization layer and rectified linear unit [28] respectively; 
Concat denotes the concatenation operation, which concatenates feature maps from different 
layers in the channel dimension as proposed in DenseNet; Bottleneck denotes a dimensional 
reduction operation consisting of a Conv, BN and ReLU, where the convolution kernel size is 
set to 11× ; Block denotes the combination of two Conv-BN-ReLU subblocks. The algorithm 
flow chart is shown in Fig. 2. 

 

 
Fig. 2. The algorithm flow chart. 
 

The workflow of our proposed DCRN can be divided into three stages: 1) After the LDCT 
image is input into the network, a Conv layer and a ReLU layer are first applied to obtain a set 
of initial feature maps. 2) Several cascaded Blocks are used to gradually extract features of 
higher-level abstraction, and then the output feature maps of each Block are concatenated in 
the Concat layer. The  number of the feature maps are reduced by the Bottleneck layer which 
have augmented as a result of the concatenation. Note that the dense connectivity pattern 
applied here is a little different from that proposed in DenseNet [25], in other words, we have 
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modified the dense connectivity pattern to reduce its computational cost while maintaining the 
full utilization of the output feature maps of each Block in the network. 3) The last Conv layer 
aggregates the feature maps to output a residual map, the estimated NDCT image is obtained 
by adding the residual map to the LDCT image. 

2.2 Implement Details 
In convolutional kernel design of convolutional neural network, it is conventional and 
advantageous to stack several small convolutional kernels instead of using a single large 
convolutional kernel. Particularly, when the receptive fields are the same, the number of 
weights can be saved by stacking several small convolution kernels. Additionally, the use of 
multiple small convolution kernels increases nonlinearity to the network.   

The convolution kernel size is set to 3×3 for all convolutional layers except for the first one 
which is set to 5×5, and for every convolutional layer, we pad zeros to maintain the input and 
output feature map size. K and F, important hyperparameters that affect the network 
performance, represent the number of Blocks and the number of feature maps in each 
convolutional layer respectively. In this paper, K=5 and F=64 by default, and the significance 
of these values on network performance will be discussed in Section 3.3. 

3. Experiments and evaluations 
 All the experiments were performed on the computer platform with the following 

configurations: CPU is Intel Core i7-6850K, GPU is Nvidia GeForce GTX 1080 Ti. We used 
Caffe [29] to train CNN models and then evaluated them with MATLAB R2016b. 

3.1 Training 
    Training convolution neural network needs many of the corresponding input and output 
images to each other, but in practice to obtain real and mutual corresponding LDCT and 
NDCT image is very difficult. In the field of low-dose CT image denoising, the LDCT image 
is mainly simulated from NDCT image by the algorithm. 

TCIA (The Cancer Imaging Archive) [30] is a public database containing common tumor 
medical images and corresponding clinical information, from which we selected 200 NDCT 
images various human body parts as training data, and the size of the images is 512×512. The 
simulation algorithm proposed by Zeng et al. [31] is used to add Poisson noise to the NDCT 
image to generate the corresponding LDCT image. Let S be the simulated sinogram before 
log-transform, the corresponding contaminated sinogram Sn was obtained by the following 
formula: 

                           
𝑺𝑺𝒏𝒏 = Poisson(𝑏𝑏 ∙ 𝑒𝑒−𝑺𝑺 + 𝑟𝑟)                                                                 (1)  

 
where b is the blank scan factor that controls the simulated noise level, b is read-out noise, 
Possion() denotes the process of adding Poisson noise. In our simulation, b is set to 106, the 
LDCT image is reconstructed from Sn by FBP algorithm [8]. For example, Fig. 3 is an NDCT 
picture, and Fig. 4 is a picture of the corresponding LDCT, which is a picture after adding 
Poisson noise in Fig. 3. 
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Fig. 3. A NDCT image                              Fig. 4. The image of corresponding LDCT  
 

In order to train the network more efficiently, our proposed DCRN was trained based on 
image patches with a size of 55×55 and a sliding interval of 8 pixels. After extracting the 
patches, data augmentation including rotation and flipping was applied to expand the training 
set, which is beneficial to suppress overfitting and improve the robustness of the network. 

In the training phase, the hyperparameters were set according to the following: starting base 
learning rate was 10-3 with a decreasing rate of 10-5 per step, convolution kernels initialized 
with random Gaussian distribution of zero mean and standard deviation 0.01, all bias terms set 
to zero, batch size of one training iteration set to 64, Mean Squared Error (MSE) applied as the 
loss function and optimized by Adam[32].     

3.2 Evaluation 
We randomly selected 100 CT images from TCIA to test our proposed DCRN, these images 
were not included in the training set. Moreover, BM3D [33], D-ResNet [23] and RED-CNN 
[19] were selected to compare with DCRN. BM3D uses similarity between image blocks for 
joint filtering; D-ResNet contains 7 convolution layers, and the middle 5 convolution layers 
use empty convolution to increase the receptive field; RED-CNN adopts the structure of 
Residual Codec and comprises of 5 symmetric convolutional layers and 5 deconvolution 
layers. 

3.2.1 Subjective Visual Effects 
Fig. 5 exhibits the qualitative results of each type of image. As can be seen, the LDCT 

image not only has a high noise level, but also is accompanied by radial artifacts. Although 
BM3D effectively removes noise and makes the image visually smoother, it does not suppress 
artifacts well, and there are still a lot of artifacts remained in the image. D-ResNet removes 
most of the artifacts, but it does not effectively remove the noise, and the denoised image is 
visually blurry. In contrast, RED-CNN and our proposed DCRN are better in noise removal 
and artifact suppression. Similar conclusion can be drawn from Fig. 6. which demonstrates the 
qualitative results of another test image. 
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                                            Fig. 5. Qualitative results of the test image A  
 

 
                                    Fig. 6. Qualitative results of the test image B. 
 
Although the denoising results of our proposed DCRN is very similar to those of RED-CNN, 

it can still be found that DCRN is better than RED-CNN in preserving image details Fig. 7 and 
Fig. 8 magnify the area marked by the red box found in Fig. 5 and Fig. 6, respectively. In Fig. 
7, BM3D and D-ResNet cannot effectively preserve the small gap between the bone indicated 
by the red arrow, while RED-CNN and DCRN preserve it completely. For the small bone 
groove indicated by the blue arrow, it becomes much shorter after denoising by BM3D, 
D-ResNet and RED-CNN, only our proposed DCRN preserve it well. In Fig. 8, the red and 
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blue arrows point to the gap between the tissues. In the images denoised by BM3D, D-ResNet 
and RED-CNN, the gaps have different degrees of blurring, in contrast, the gaps in the 
denoised image of DCRN are clearly visible. 

 

 
               Fig. 7. magnification of the region marked enclosed by the red box in Fig. 5. 
 

 
              Fig. 8.  magnification of the region enclosed by the red box in Fig.6. 

3.2.2 Objective Evaluation Index 

Common objective evaluation indexes of image quality include Peak Signal to Noise Ratio 
(PSNR), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Structural 
Similarity (SSIM) [34]. The calculation of PSNR and RMSE is based on mean square error, so 
it is sensitive to large pixel value error. The calculation of them are as follows: 

𝑴𝑴𝑴𝑴𝑴𝑴 =
𝟏𝟏
𝒎𝒎𝒎𝒎

���𝑰𝑰(𝒊𝒊, 𝒋𝒋) − 𝑰𝑰𝒓𝒓𝒓𝒓𝒓𝒓(𝒊𝒊, 𝒋𝒋)�𝟐𝟐
𝒏𝒏

𝒋𝒋=𝟏𝟏

𝒎𝒎

𝒊𝒊=𝟏𝟏

 (2) 
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𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 = 𝟏𝟏𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏
�𝟐𝟐𝒃𝒃 − 𝟏𝟏�

𝟐𝟐

𝑴𝑴𝑴𝑴𝑴𝑴
 (3) 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = √𝑴𝑴𝑴𝑴𝑴𝑴 (4) 

Where, 𝑰𝑰 and 𝑰𝑰𝒓𝒓𝒓𝒓𝒓𝒓 are the image to be evaluated and the reference image of size 𝒎𝒎 × 𝒏𝒏, 
respectively, and b is the number of bits occupied by the pixel point storage, for example, b=8 
for the 8-bit gray image. The larger the value of PSNR and the smaller the value of RMSE, the 
better the image quality. MAE calculates the mean of the absolute error. The smaller the value, 
the better. The formula is as follows:  

𝑴𝑴𝑴𝑴𝑴𝑴 =
𝟏𝟏
𝒎𝒎𝒎𝒎

���𝑰𝑰(𝒊𝒊, 𝒋𝒋) − 𝑰𝑰𝒓𝒓𝒓𝒓𝒓𝒓(𝒊𝒊, 𝒋𝒋)�
𝒏𝒏

𝒋𝒋=𝟏𝟏

𝒎𝒎

𝒊𝒊=𝟏𝟏

 (5) 

PSNR, RMSE and MAE evaluate the image quality based on the pixel value error 
between the test image and the reference image, without considering visual characteristics of 
the human eye, so the evaluation results may be inconsistent with people's subjective feelings. 
In order to make the evaluation of the image quality more in line with people's subjective 
feelings, SSIM evaluates the image quality based on brightness, contrast, and structure. A 
condensed form of the SSIM is given by: 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =
�𝟐𝟐𝝁𝝁𝒙𝒙𝝁𝝁𝒚𝒚 + 𝑪𝑪𝟏𝟏��𝟐𝟐𝝈𝝈𝒙𝒙𝒙𝒙 + 𝑪𝑪𝟐𝟐�

�𝝁𝝁𝒙𝒙𝟐𝟐 + 𝝁𝝁𝒚𝒚𝟐𝟐 + 𝑪𝑪𝟏𝟏��𝝈𝝈𝒙𝒙𝟐𝟐 + 𝝈𝝈𝒚𝒚𝟐𝟐 + 𝑪𝑪𝟐𝟐�
 (6) 

Where, x, y represent the image to be evaluated and the reference image, respectively;  𝝁𝝁𝒙𝒙,𝝁𝝁𝒚𝒚 
are the means of x and y; 𝝈𝝈𝒙𝒙,𝝈𝝈𝒚𝒚 are the standard deviations of x and y; 𝝈𝝈𝒙𝒙𝒙𝒙 is the correlation 
coefficient between x and y. 𝑪𝑪𝟏𝟏 and  𝑪𝑪𝟐𝟐 are the two constants to stabilize the division with 
weak denominator. The value is constrained in [0,1] where the larger value represents a higher 
image quality. As for quantitative evaluation, Peak Signal to Noise Ratio (PSNR), Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE) and Structural Similarity (SSIM) were 
chosen as evaluation indexes of image quality with the results of different methods provided in 
Table 1. We selected 100 test images from TCIA and calculated these objective evaluation 
indicators of denoised images by different methods on MATLAB R2016b. All the methods 
can significantly improve the quantitative evaluation indexes after image denoising; however, 
RED-CNN and our proposed DCRN perform at a higher level compared to BM3D and 
D-ResNet. Furthermore, when solely examining RED-CNN, which achieves cutting edge 
denoising results, our DCRN method remains slightly ahead in each quantitative evaluation 
indexes.  

Table 1. Quantitative evaluation indexes of different methods 
Method PSNR RMSE MAE SSIM 

LDCT 26.91 12.77 5.417 0.8421 

BM3D 29.29 9.346 3.458 0.8940 

D-ResNet 31.62 7.081 2.628 0.9231 

RED-CNN 33.11 6.110 1.998 0.9427 

Proposed 33.67 5.659 1.965 0.9434 
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3.2.3 Computational Complexity 
In addition to subjective visual effects and objective evaluation indexes, computational 

complexity is also an important factor in measuring the overall performance of an algorithmic 
model. Table 2 shows the model weights, CPU running calculation time, and GPU running 
calculation time, GPU training time, model size for various denoising methods. The running 
time and training time are in seconds. The measurement method is to calculate the average 
operation time of the corresponding method on 100 test images. Among the four methods, the 
execution time of traditional method BM3D is the shortest, but the denoising effect of it is the 
worst. Although the training time, running time in test images as well as the model size of 
D-ResNet are the best among the three networks, the objective evaluation indexes of it are far 
lower than the other two networks as shown in Table 1. Due to the shortcuts connection 
mechanism of RED-CNN, the training time of the proposed network is longer than RED-CNN, 
but the proposed network has fewer parameters and smaller model size, the execution time on 
test images is much shorter. Once the network is trained off, the trained network model can be 
used to process the test images, and the shorter running time on test images can make the 
method have higher engineering value. Considering the trade off between the performance and 
running time on test images as well as the training time, we suggest that the proposed method 
is superior to other comparison methods. 

 
Table 2. Computational cost of different methods 

Method Parameters Running time on 
CPU (secs) 

Running time on 
GPU (secs) 

Training time on 
GPU (secs) Model size(KB) 

BM3D / 2.697 / / / 

D-ResNet 2.25 × 105 2.951 0.0015 20209.0672 2716 

RED-CNN 1.85 × 106 11.244 0.1800 20920.7125 21745 

Proposed 3.95 × 105 4.437 0.0020 23656.9195 4789 

3.3 The impact of network structure 
   This subsection will explore the impact of different network structural configurations on 

the denoising performance. In the calculation of CPU time, due to the large amount of 
computation of deep CNNs, the traditional method BM3D is faster than other methods based 
on CNNs; but at the same time, due to the computation of the convolutional neural network 
can be highly parallel, the method based on the convolutional neural network can achieve 
extremely low computation time on the GPU, while BM3D cannot be compared due to the 
lack of GPU-based implementation.  Among the three methods based on convolutional neural 
network, D-Resnet has the least number of weights and the fastest CPU/GPU computing speed, 
but the cost is that its denoising effect is still far from the other two network models.  For 
RED-CNN and the network implemented in this paper, the effect of the network implemented 
in this paper is slightly ahead of that of RED-CNN, but also reduces the weight by nearly 79%, 
greatly simplifying the complexity of the model. Meanwhile, the CPU/GPU computing speed 
of the network implemented in this paper is also significantly faster than that of RED-CNN, 
and the computing efficiency is significantly improved.     
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Table 3. The evaluation indexes with different number of Blocks 

Number of 
Blocks PSNR RMSE MAE SSIM 

3 33.45 5.800 2.017 0.9420 
4 33.58 5.714 1.978 0.9431 
5 33.67 5.659 1.965 0.9434 
6 33.59 5.707 1.974 0.9432 
7 33.66 5.655 1.966 0.9436 

 
Table 4. The evaluation indexes with different number of feature maps 

Number of 
feature maps PSNR RMSE MAE SSIM 

32 33.51 5.756 2.012 0.9421 
48 33.49 5.770 2.004 0.9422 
64 33.67 5.659 1.965 0.9434 
80 33.64 5.661 1.974 0.9431 
96 33.67 5.623 1.982 0.9431 

 
Table 3 shows the evaluation indexes with different number of Blocks (denoted as K ). 

Fig. 9 shows the polyline graph of the variation of evaluation indexes in the table with the 
number of convolution modules. As the number of convolution modules increases, the 
evaluation index trend rises until it reaches a certain threshold and then oscillates within a 
certain range. The PSNR and MAE indexes peak when 5=K , while the RMSE and SSIM 
indexes peak when 7=K . Since the values of the indexes in both cases are very close, it can 
be considered that both cases achieve the optimal denoising. performance. Therefore, the 
default setting of  5=K reduces the number of network parameters while consistently 
producing optimal denoising results. Table 4  shows the evaluation indexes with different 
number of feature maps (denoted as F ) of each convolutional layer. Fig. 10 shows that with 
the increase of the number of feature maps, the evaluation indexes overall also show the 
characteristics of first getting better and then oscillating. When F rises from 48 to 64, there is a 
significant improvement in the evaluation indexes. But when we continue to increase F , the 
indexes do not change much. Setting 64=F can make a good balance between denoising 
performance and network complexity. From the experiments above, we can see that increasing 
the depth and width of the network does not necessarily lead to performance improvement, 
excessive complex network may also cause problems such as overfitting and thus have a 
negative impact on network performance. 
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            Fig. 9. The graph of the evaluation index with the number of convolution module 

 
Fig. 10. The graph of the evaluation index changes with the quantity of convolutional layer output 

feature maps 
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Besides, we have also explored the impact of batch normalization, residual learning and 
dense connection on network denoising performance with the results displayed in Table 5. 
The evaluation indexes show a significant decline after removing batch normalization, 
residual learning or dense connection, which confirms the positive role of these three 
mechanisms in improving the denoising performance of the network.  

 
Table 5. The evaluation indexes with different structural configurations  

Architecture PSNR RMSE MAE SSIM 
Baseline 33.67 5.659 1.965 0.9434 

Baseline without batch normalization 33.52 5.739 2.049 0.9405 

Baseline without residual learning 33.14 6.071 2.052 0.9419 

Baseline without dense connection 33.45 5.800 1.983 0.9427 

   

4. Conclusion 
Since there are complex noise and artifacts in low-dose CT images, traditional methods often 
lose structural details when denoising images. Recently, due to the strong 
feature representation capabilities of deep learning methods, breakthroughs have been made 
in the field of computer vision. Inspired, we have proposed DCRN for low-dose CT image 
denoising, which mainly improves the denoising performance through three mechanisms: 
batch normalization, residual learning and dense connection. From the results of the 
experiment, our suggested DCRN obtains better performance in both visual quality and 
quantitative indexes while maintaining a low computational cost. If the proposed network can 
be trained with real images instead of simulated ones in the future, the reliability of the 
network model will be greatly improved, which will help translate the research results into 
actual products. 
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